Tomato LeAGP-1 arabinogalactan-protein purified from transgenic tobacco corroborates the Hyp contiguity hypothesis.
نویسندگان
چکیده
Functional analysis of the hyperglycosylated arabinogalactan-proteins (AGPs) attempts to relate biological roles to the molecular properties that result largely from O-Hyp glycosylation putatively coded by the primary sequence. The Hyp contiguity hypothesis predicts contiguous Hyp residues as attachment sites for arabino-oligosaccharides (arabinosides) and clustered, non-contiguous Hyp residues as arabinogalactan polysaccharide sites. Although earlier tests of naturally occurring hydroxyproline-rich glycoproteins (HRGPs) and HRGPs designed by synthetic genes were consistent with a sequence-driven code, the predictive value of the hypothesis starting from the DNA sequences of known AGPs remained untested due to difficulties in purifying a single AGP for analysis. However, expression in tobacco (Nicotiana tabacum) of the major tomato (Lycopersicon esculentum) AGP, LeAGP-1, as an enhanced green fluorescent protein fusion glycoprotein (EGFP)-LeAGP-1, increased its hydrophobicity sufficiently for chromatographic purification from other closely related endogenous AGPs. We also designed and purified two variants of LeAGP-1 for future functional analysis: one lacking the putative glycosylphosphatidylinositol (GPI)-anchor signal sequence; the other lacking a 12-residue internal lysine-rich region. Fluorescence microscopy of plasmolysed cells confirmed the location of LeAGP-1 at the plasma membrane outer surface and in Hechtian threads. Hyp glycoside profiles of the fusion glycoproteins gave ratios of Hyp-polysaccharides to Hyp-arabinosides plus non-glycosylated Hyp consistent with those predicted from DNA sequences by the Hyp contiguity hypothesis. These results demonstrate a route to the purification of AGPs and the use of the Hyp contiguity hypothesis for predicting the Hyp O-glycosylation profile of an HRGP from its DNA sequence.
منابع مشابه
Tomato LeAGP-1 is a plasma membrane-bound, glycosylphosphatidylinositol-anchored arabinogalactan-protein.
Arabinogalactan-proteins (AGPs) are a class of highly glycosylated, hydroxyproline-rich glycoproteins that function in plant growth and development. Tomato LeAGP-1 represents a major AGP expressed in cultured cells and plants. Based on cDNA and amino acid sequence analyses along with carbohydrate and other biochemical analyses, tomato LeAGP-1 is hypothesized to be a classical AGP localized to t...
متن کاملThe O-Hyp glycosylation code in tobacco and Arabidopsis and a proposed role of Hyp-glycans in secretion.
Most aspects of plant growth involve cell surface hydroxyproline (Hyp)-rich glycoproteins (HRGPs) whose properties depend on arabinogalactan polysaccharides and arabinosides that define the molecular surface. Potential glycosylation sites are defined by an O-Hyp glycosylation code: contiguous Hyp directs arabinosylation. Clustered non-contiguous Hyp directs arabinogalactosylation. Elucidation o...
متن کاملOverexpression of tomato LeAGP-1 arabinogalactan-protein promotes lateral branching and hampers reproductive development.
LeAGP-1 is a glycosylphosphatidylinositol (GPI)-anchored arabinogalactan-protein (AGP) in tomato (Lycopersicon esculentum). Patterns of mRNA expression and protein localization for LeAGP-1 indicate that it likely functions in certain aspects of plant growth and development. To elucidate LeAGP-1 function(s), transgenic tomato plants expressing enhanced green fluorescent protein (GFP) fused to Le...
متن کاملMolecular interactions of arabinogalactan proteins with cortical microtubules and F-actin in Bright Yellow-2 tobacco cultured cells.
Arabinogalactan proteins (AGPs), a superfamily of plant hydroxyproline-rich glycoproteins, are present at cell surfaces. Although precise functions of AGPs remain elusive, they are widely implicated in plant growth and development. A well-characterized classical tomato (Lycopersicon esculentum) AGP containing a glycosylphosphatidylinositol plasma membrane anchor sequence was used here to elucid...
متن کاملThe lysine-rich arabinogalactan-protein subfamily in Arabidopsis: gene expression, glycoprotein purification and biochemical characterization.
AtAGP17, AtAGP18 and AtAGP19 are homologous genes encoding three putative glycosylphosphatidylinositol (GPI)-anchored classical arabinogalactan-proteins (AGPs) in Arabidopsis. They are distinguished from other AGPs by a short, C-terminal lysine-rich region. Organ-specific expression of these genes was revealed by Northern blot analysis. AtAGP17 was strongly expressed in leaves and stems, and we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2002